Calcium-stannous oxide solid solutions for solar devices

Ned Taylor, Arnaldo Galbiati, Monica Saavedra, and Steve Hepplestone have just published an article exploring the potential of calcium-doped stannous oxide, (Sn:Ca)xO, for its potential as an active layer in a solar device. By identifying a suitable oxide active layer, the authors hope to design an all-oxide solar cell. This work was performed by Ned and Steve at the University of Exeter whilst working with Solaris Photonics.

In this article, the authors explore how doping stannous oxide, SnO, with calcium affects the electronic and optical properties. It is determined that a doping concentration of x=7:1 results in the most favourable properties for photovoltaic applications – a direct band gap of 1.5 eV. The study is expanded upon by exploring potential transport layers for this particular solid solution. CaO and TiO2 are identified as potential candidates for the hole and electron transport layers, respectively.

A potential all-oxide solar cell design is put forward by the authors, CaO/(Sn:Ca)7:1O/TiO2. It is hoped that this study grow new interest in all-oxide solar cells, which have been touted as potential replacements for current silicon solar cells due to their possible improved stability and efficiency, and reduced environmental and economic costs.

To find out more, follow the link to the article: https://doi.org/10.1063/5.0024947

The Potential of Overlayers on Tin-based Perovskites for Water Splitting

Ned Taylor, Conor Price, Alex Petkov, Marcus Carr, Jason Hale, and Steve Hepplestone have just published an article. The initial work was performed by Conor Price, Alex Petkov, Marcus Carr and Jason Hale during their Masters Physics course at the University of Exeter, with it then being expanded upon by Conor, Steve and Ned.

In this article, the authors explore the capabilities of tin-based oxide perovskites as photocatalysis. An investigation of their electron properties, as well as the reaction pathways associated with their surfaces, is presented. It is determined that SrSnO3 offers some potential as a photocatalyst.

The addition of an overlayer to the surface of the oxide perovskite SrSnO3 is then considered. It is determined that the inclusion of this thin surface coating leads to a drastic improvement of both the oxygen and the hydrogen evolution reactions. SrSnO3 with a ZrO2 overlayer is found to be capable of sustaining bifunctional water splitting at its surface (simultaneous hydrogen and oxygen gas production from water).

To find out more, here is a link to the article: https://doi.org/10.1021/acs.jpclett.0c00964